

DCC-003-001515

Seat No.

B. Sc. (Sem. V) (CBCS) Examination

April / May - 2015

Mathematics: Paper - BSMT-503 (A)

(Discrete Mathematics & Complex Analysis-I) (New Course)

> Faculty Code : 003 Subject Code : 001515

Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70

Instructions: (1) All the questions are compulsory.

- (2) Answer all the MCQs in answer book.
- (3) Numbers written to the right indicate full marks of the question.
- 1 Attempt all the multiple choice questions:

20

- (1) If relation R is reflexive, anti-symmetric and transitive then R is said to be _____.
 - (A) equivalence relation
 - (B) lattice
 - (C) POSET
 - (D) none of these
- (2) If R is a equivalence relation on set X then $[x] = [y] \Leftrightarrow$

(A) x = y

- (B) xRx
- (C) $x \neq y$
- (D) xRy

- (3) If R is a relation from A to B then
 - (A) $R \subset A \times B$
 - (B) $A \times B \subset R$
 - (C) $R = A \times B$
 - (D) None of these
- (4) (S_{30}, D) is not a _____.
 - (A) POSET
 - (B) lattice
 - (C) totally ordered set
 - (D) none of these
- (5) $a \le b \Leftrightarrow$ _____.
 - (A) a'*b=0
 - (B) a*b'=0
 - (C) $a' \oplus b = 0$
 - (D) $a \oplus b' = 0$
- (6) If m_i and m_j are distinct minterms in n-variables then
 - $(A) \quad m_i * m_j = 1$
 - (B) $m_i \oplus m_j = 1$
 - (C) $m_i * m_j = 0$
 - (D) $m_i \oplus m_j = 0$

(7)	If x and y are distinct atoms of Boolean algebra $(B, *, \oplus, ', 0, 1)$
	then
	(A) x * y = 0
	(B) $x * y = 1$
	(C) $x * y = x$
	(D) $x * y = y$
(8)	Sum of all minterms in n-variables is
	(A) n
	(B) $n+1$
	(C) 0
	(D) 1
(9)	The Karnaugh map is useful to minimize the
	(A) sum of product canonical form
	(B) sum of maxterms
	(C) product of sum canonical form
	(D) product of maxterms
(10)	For POSET (S_{30}, D) , $5' =$
	(A) 5
	(B) 0
	(C) 30
	(D) none of these
(11)	If $f(z) = e^{2z}$ then imaginary part of $f(z)$ is
	(A) $e^x \sin y$
	(B) $e^{2x}\sin 2y$
	(C) $e^x \cos y$
	(D) $e^{2x}\cos 2y$

- (12) The imaginary part of $(\sin x + i\cos x)^5$ is
 - (A) $\sin 5x$
 - (B) $-\sin 5x$
 - (C) $\cos 5x$
 - (D) $-\cos 5x$
- (13) If $x+iy = \sqrt{2} + 3i$ then $x^2 + y$ is
 - (A) 7
 - (B) 5
 - (C) 13
 - (D) $\sqrt{2} + 3$
- (14) $f(z) = \overline{z}$ is
 - (A) analytic
 - (B) entire
 - (C) both (A) and (B)
 - (D) none of these
- (15) The real part $\frac{2+3i}{3-4i}$ is
 - (A) $-\frac{17}{25}$
 - (B) $\frac{6}{25}$
 - (C) $-\frac{6}{25}$
 - (D) none of these

- (16) The value of integral $\int_{|z|=2}^{\infty} \frac{\cos z}{z(z^2+9)} dz$ is
 - (A) 0
 - (B) $\frac{i\pi}{2}$
 - (C) $\frac{i\pi}{4}$
 - (D) none of these
- (17) If C is ellipse with center at origin then $\int_{C} \frac{\left(z^{3}+3\right)}{z} dz =$
 - (A) $6i\pi$
 - (B) $\frac{i\pi}{2}$
 - (C) $\frac{i\pi}{4}$
 - (D) $-6i\pi$
- (18) An analytic function with constant modulus is _____.
 - (A) zero
 - (B) constant
 - (C) variable
 - (D) none of these

- (19) If $u = \frac{1}{2} \log (x^2 + y^2)$ is harmonic then its harmonic conjugate
 - (A) $\tan^{-1}\left(\frac{x}{y}\right) + c$
 - (B) $\tan^{-1}\left(\frac{y}{x}\right) + c$
 - (C) $\log\left(\frac{x}{y}\right) + c$
 - (D) $\log\left(\frac{y}{x}\right) + c$
- (20) If $C: z = 2e^{i\theta}$, $0 \le \theta \le 2\pi$ then $\int_C \frac{e^z}{z+1} dz =$
 - (A) $\frac{i\pi e^2}{3}$
 - (B) $-\frac{i\pi e^2}{3}$
 - (C) 0

(1)

- (D) none of these
- 2 (a) Attempt any three:
 - Define:
 - (i) Relation
 - (ii) Hasse diagram.
 - (2) Simplify the Boolean expression

$$\left[a*(b'\oplus c)\right]'*\left[b'\oplus (a*c')\right].$$

6

(3)	Draw the Hasse diagram of (S_{60}, D) .
(4)	In usual notation prove that $A(x) = A - A(x')$.
(5)	Prove that (S_{105}, D) is a POSET.
(6)	If (P, R) is a POSET then prove that (P, R^{-1}) is
Λ++ <i>c</i>	also a POSET.
Aut	empt any three:
(1)	Define Lattice and show that (S_6, D) is a Lattice.
(2)	Express Boolean expression $\alpha(x_1, x_2, x_3) = x_2 x_3$ in the
	canonical form
	(i) as a sum of product
	(ii) as a product of sum.
(3)	State and prove cancellation law for distributive
` ′	lattice.
(4)	Prove that the direct product of two lattices is a
()	lattice.
(5)	State and prove DeMorgan's law for Boolean
, ,	algebra.
(6)	Show that the lattice with three elements is a
	POSET.
Atte	empt any two:
(1)	State and prove Stone's representation theorem.
(2)	Prove that every chain is a distributive lattice.
(3)	Define Boolean algebra and show that
	$(S_6, *, \oplus, ', 0, 1)$ is a Boolean algebra.

(c)

(b)

- (4) State and prove distributive inequality for lattice.
- (5) If $A = \{a, b, c\}$ then show that (S_{30}, D) and $(P(A),\subseteq)$ are isomorphic.
- 3 (a) Attempt any three:

6

"Every analytic function is entire". True or false? Justify your answer.

- (2) Find real and imaginary part of function $f(z) = \sin z$.
- (3) Define analytic function and Harmonic function.
- (4) State Cauchy integral formula for derivative.
- (5) Show that the function $f(z) = e^{y} (\cos x + i \sin y)$ is not analytic.
- (6) State fundamental theorem of algebra.
- (b) Attempt any three:
 - (1) Evaluate : $\int_{C}^{e^{z}dz}$; where C is a circle with centre (0, 1) and radius 3.
 - (2) Prove that $f(z) = (z^2 2)e^{-x}(\cos x i\sin y)$ is an analytic function.
 - (3) Prove that $f(z) = e^z$ is an analytic function and hence deduce that f'(z) = f(z).
 - (4) Show that $f(z) = z^2$ is an analytic and entire function. Also find f'(1).
 - (5) Evaluate: $\int_{C} \frac{dz}{(z^2+4)^2}$; where C is a unit circle.
 - (6) State and prove Liouville's theorem.
- (c) Attempt any two:
 - (1) State and prove Cauchy's fundamental theorem.
 - (2) State and prove Morera's theorem.
 - (3) Evaluate: $\int_{C} \frac{dz}{(z+1)(z-1)}$; where C: |z| = 2.
 - (4) Show that sinh x sin y is a harmonic function and find its harmonic conjugate
 - (5) State and prove Cauchy integral formula.

10

9